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An improved lattice Boltzmann model with single time relaxation has been proposed for incompressible
two-dimensional~2D! steady flows. In the improved model, the steady-state incompressible Navier-Stokes
equations can be recovered in exact form and the density of the fluid becomes an irrelevant invariant, satisfying
the requirement of incompressibility. Exact analytical solutions to the distribution functions of the 2D trian-
gular and square lattice Boltzmann models have been obtained for steady plane Poiseuille flow based on the
present scheme. Boundary conditions that can be used to recover exactly such analytical solutions in numerical
simulations are proposed.@S1063-651X~96!07312-6#

PACS number~s!: 47.10.1g, 05.50.1q

I. INTRODUCTION

In recent years, the lattice Boltzmann~LB! method@1–4#
has achieved great success for simulation of various transport
phenomena ranging from multiphase fluid flows@5,6# to fluid
flows through porous media@7–9# and chemical reacting
flows @10#. In particular, the LB method as a tool for mod-
eling isothermal, incompressible, low-Reynolds-number vis-
cous flow seems most promising. Among different LB meth-
ods, the model with single time relaxation, usually referred
to as the lattice Boltzmann Bhatnagar-Gross-Krook~LBGK!
model @3,4#, is believed to be more robust and most simple.
In practice, however, when simulating the incompressible
flows, the steady-state macroscopic equations recovered
from the conventional LBGK model are different from the
steady-state incompressible Navier-Stokes equations by
terms of spatial derivatives of the fluid densityr. The dis-
crepancies are the so-called compressibility errors in the LB
model, which cannot be eliminated by the refinement of the
lattice or by decreasing the viscosity without sacrificing the
stability @11#. In addition, according to the equation of state
from the LBGK model, the pressurep is related to the fluid
densityr by p5cs

2r, with cs , the speed of sound, being a
constant. For the incompressible fluid, the requirement that
r be a constant in space results in a constant pressure
throughout the flow, which is inconsistent with many practi-
cal applications, such as flow driven by the pressure differ-
ence like Poiseuille flow.

Some authors have noticed these problems. On the one
hand, in their improved LBGK model on the square lattice
for incompressible steady flow, Zou and co-workers@11#
have recovered the exact form of the Navier-Stokes equa-
tions by using a modified local equilibrium distribution and
redefined velocity. However, the constant density for incom-
pressible flow with a pressure gradient still violates the equa-
tion of statep5cs

2r. On the other hand, by replacing the
pressure gradient by a uniform body force, exact analytical
solutions to the distribution functions of the LBGK model
for steady Poiseuille flow have been obtained@12# on two-
dimensional~2D! triangular and square lattices with a con-
stant fluid densityr. Nevertheless, the introduction of a uni-
form body force to replace the pressure gradient seems rather

artificial since the pressure gradient through the flow field is
not necessarily a constant, especially for complex geometry.

In this paper, an improved LBGK model is proposed that
can both recover the exact form of 2D steady-state incom-
pressible Navier-Stokes equations and eliminate the incon-
sistency between the constant density and variable pressure.
Our scheme is illustrated on a 2D triangular lattice as well as
a square lattice. Based on the present scheme, exact analyti-
cal solutions to the distributions functions of 2D triangular-
and square-lattice LBGK models for steady-state Poiseuille
flow are obtained. Unified boundary conditions that can be
used to obtain the analytical solutions to the distribution
functions are proposed for numerical simulation on both lat-
tices. On the square lattice, different analytical solutions to
the microscopic distribution functions of the LBGK model
with the same macroscopic quantity due to different bound-
ary conditions are briefly discussed.

II. TRIANGULAR LBGK MODEL

A. Analytical solution

Let us first illustrate the improved LBGK model on a
triangular lattice with seven types of lattice links
eW i5@cos(i21)p/6,sin(i21)p/6#, for i51, . . . ,6 andeW050
~see Fig. 1!. The improved LBGK model is considered as the

FIG. 1. Schematic plot of the geometry for the plane channel
flow on the triangular lattice withnx59 andny57. Herenx and
ny are the numbers of lattice points in thex and y directions, re-
spectively.
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equation for the evolution off i(xW ,t),

f i~xW1deW i ,t1d!2 f i~xW ,t !52
1

t
@ f i~xW ,t !2 f i

~0!~xW ,t !#,

i50,1, . . . ,6, ~1!

where f i(xW ,t) is the distribution function representing the
probability of finding a ‘‘momenton’’ with momentumeW i at
nodexW5(x,y) and timet, and f i

(0)(xW ,t) is the corresponding
equilibrium distribution. The right-hand side of Eq.~1! rep-
resents the collision term andt is the single relaxation time
that controls the rate of approach to equilibrium@3,4#. The
macroscopic flow velocityuW is defined in terms of the distri-
bution function by

ruW 5(
i51

6

f ieW i , ~2!

wherer is the constant fluid density and is set to unity for an
incompressiblefluid.

The equilibrium distribution functions of momentum are
supposed to be dependent only on the local flow velocity
uW . A suitable choice is@11#

f 0
~0!5ad2uW •uW ,

f i
~0!5

~12a!d

6
1
1

3
~eW i•uW !1

2

3
~eW i•uW !22

1

6
uW •uW ,

i51, . . . ,6, ~3!

wherea is an adjustable parameter, usually chosen as 1/2,
andd is given by

(
i50

6

f i
~0!5(

i50

6

f i5d.

That is, the idea is to let momentum propagate and collide
rather than fluid particles themselves, because for the case of
an incompressible fluid, the density is an irrelevant invariant
and set to unity. Note that Eq.~1! is written in physical units
with the value of the lattice link beingd and the speed for the
particle on the lattice being unity. As a result, a time step
also has the value ofd.

A Chapman-Enskog procedure can be applied to~1! to
derive the macroscopic equations of the model. For the
steady case, they can be worked out as

]aua50 ~4!

and

]b~uaub!52]ap1n]b]bua , ~5!

which is the exact form of the steady incompressible Navier-
Stokes equations at constant densityr51. In the above
equations, the Einstein summation convention has been used
and the pressure and the kinematic viscosity are given, re-
spectively, by

p5
~12a!d

2
, n5

~2t21!d

8
. ~6!

It can be seen from the expression of pressure that the incon-
sistency has been eliminated between the constant density
r and variable pressurep related by the equation of state
p5cs

2r in the conventional LBGK model.
As a first application of the improved LBGK model for

steady-state incompressible fluid, let us consider the plane
Poiseuille flow in a channel with width 2L and velocity
uW 5(ux ,uy)5(u,0), which is an exact solution of the incom-
pressible Navier-Stokes equations~4! and~5! and is given by

u5u0S 12
y2

L2D , ]p

]x
52G,

]p

]y
50, ~7!

whereG is a constant associated with the characteristic ve-
locity u0 by

G52rnu0 /L
2. ~8!

Without loss of generality, we may assume thatL51, which
can be achieved by a scaling ofy85y/L.

Now suppose that the improved LBGK model can model
Poiseuille flow without compressibility error. Then there
must be a solutionf i(xW ,t) to Eq. ~1! that represents the Poi-
seuille flow. The solutionf i(xW ,t) is expected to have the
following properties: ~i! f i(xW ,t) is steady, i.e.,
f i(xW ,t)5 f i(xW )5 f i(x,y) is independent of timet; ~ii !
( i50
6 f i(xW )5d5dc(12gx), wheredc is a constant andg is

related to constant pressure gradient by

g5
4nu0

~12a!dc
, ~9!

according to~7! and ~8! ~remember thatL51 andr51);
~iii ! f 2(x,y)5 f 6(x,2y) and f 3(x,y)5 f 5(x,2y) due to
the symmetry of the flow ~see Fig. 1!; ~iv!
( i51
6 f i(x,y)eiy5uy50; and ~v! ( i51

6 f i(x,y)eix5ux5u,
whereu5u0(12y2) ~recall thatL51).

In the following we shall find such a solution. From~3!,
the equilibrium distributions for momentum reduce to, for
ux5u anduy50,

f 0
~0!~x,y!5ad2u2,

f 1
~0!~x,y!5

~12a!d

6
1
1

3
u1

1

2
u2,

f 4
~0!~x,y!5

~12a!d

6
2
1

3
u1

1

2
u2, ~10!

f 2
~0!~x,y!5

~12a!d

6
1
1

6
u, f 3

~0!~x,y!5
~12a!d

6
2
1

6
u,

f 5
~0!~x,y!5

~12a!d

6
2
1

6
u, f 6

~0!~x,y!5
~12a!d

6
1
1

6
u.

Suppose the solutionf i(x,y) to be of the form
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f i~x,y!5~ai8d1ai1biy1ciy
21diy

31eiy
4!

for i50,1,4, ~11!

f i~x,y!5~ai8d1ai1biy1ciy
2! for i52,3,5,6,

where, fori52,3,5,6, f i(x,y) are expected to be dependent
on y up toy2 terms because the correspondingf i

(0) is a linear
function of u. In Eqs. ~11! the 34 coefficientsai8 , ai , bi ,
ci , etc., are supposed to be independent ofy. With the as-
sumption~11!, one is ready to find the coefficients by using
the steady condition, while the other four properties off i
serve to confirm the correctness of the form~11!.

In order thatf i(xW ,t) be steady, forf 0(xW ) one should have

f 0
1~x,y!5 f 0~x,y!2

1

t
@ f 0~x,y!2 f 0

~0!~x,y!#5 f 0~x,y!.

~12!

Here f i
1 denote the distribution function immediately after

collision. Substituting Eqs.~10! and ~11! into ~12! yields

a085a, a052u0
2 , b05d050, c052u0

2 , e052u0
2 .

~13!

The steady condition off 1(xW ) requires

f 1
1~x,y!5 f 1~x,y!2

1

t
@ f 1~x,y!2 f 1

~0!~x,y!#5 f 1~x1d,y!,

~14!

from which it follows that

a185
12a

6
, a15

1

3
u01

1

2
u0
21

2

3
tnu0d,

~15!

b15d150, c152
1

3
u02u0

2 , e15
1

2
u0
2 .

Similarly, for f 2(xW ) to be steady, one expects

f 2
1~x,y!5 f 2~x,y!2

1

t
@ f 2~x,y!2 f 2

~0!~x,y!#

5 f 2~x1d/2,y1dy!, ~16!

wheredy5A3d/2. As a result, one has the coefficients

a285
12a

6
, a25u01

1

3
tnu0d1

1

8
tu0d

22
1

4
t2u0d

2,

~17!

b25
1

3
tu0dy , c252

1

6
u0 .

Other coefficients can be found in a similar way~the final
results are summarized below!

f 0~x,y!5ad2u2,

f 1~x,y!5
~12a!d

6
1
1

3
u1

1

2
u21

2

3
tnu0d,

f 4~x,y!5
~12a!d

6
2
1

3
u1

1

2
u22

2

3
tnu0d,

f 2~x,y!5
~12a!d

6
1
1

6
u1

1

3
tu0ydy2

2

3
tnu0d, ~18!

f 3~x,y!5
~12a!d

6
2
1

6
u2

1

3
tu0ydy1

2

3
tnu0d,

f 5~x,y!5
~12a!d

6
2
1

6
u1

1

3
tu0ydy1

2

3
tnu0d,

f 6~x,y!5
~12a!d

6
1
1

6
u2

1

3
tu0ydy2

2

3
tnu0d.

It can be easily shown that~18! satisfies properties~i!–~v!. It
is, therefore, at least one exact representation of the distribu-
tion functions for the Poiseuille flow.

B. Boundary conditions

The next problem is to check whether the numerical simu-
lation can recover the analytical solution~18!. To do so, the
boundary conditions are very important. As it is well known,
the implementation of an inappropriate boundary condition
may cause a first-order error@12–15#. In our numerical simu-
lation, we adopt the nonslip boundary conditions for lower
and upper boundaries proposed by Nobleet al. @14#, while
another approach for the boundary with prescribed pressure
is presented that can be used to obtain the analytical results
~18! up to machine accuracy@15#.

1. Nonslip boundary condition

To cast the nonslip boundary condition at lower or upper
boundaries, we use the following scheme proposed in@14#.
For simplicity, we take the case of a bottom node as an
example. A similar procedure can be applied to the top node.
The boundary is in thex direction witheW5 andeW6 pointing
into the wall for the bottom node@see, e.g., node~5,1! in Fig.
1#. After streaming,f 0, f 1, f 4, f 5, and f 6 are known, while
f 2 and f 3 are unknown. For the nonslip boundary,
ux5uy50 are specified on the wall and we have to deter-
mine f 2, f 3, andd from ~2!. So we have the equations

f 01 f 11 f 21 f 31 f 41 f 51 f 65d,

f 11~ f 21 f 6!/22 f 42~ f 31 f 5!/25ux50, ~19!

~A3/2!@ f 21 f 32~ f 51 f 6!#5uy50,

from which f 2, f 3, andd can be worked out as

f 25 f 52~ f 12 f 4!,

f 35 f 61~ f 12 f 4!, ~20!
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d5 f 01 f 11 f 412 f 512 f 6 .

With ~20!, the relaxation step can be applied on the boundary
nodes as well. Notice that although the present nonslip
boundary conditions are in the same form as those proposed
in @14#, the meaning is rather different, because in the present
model f i is no longer a fluid particle distribution. The bound-
ary conditions in@14# suffer the disadvantage of nonconser-
vation of the particle number on boundaries, so they seem to
apply only for a somewhat permeable boundary wall. On the
other hand, in our model, asf i is related to momentum~or
velocity! instead of particle distribution, they are not neces-
sarily a conserved quantity on boundaries. The nonslip
boundary conditions in the present LBGK model therefore
may be applied to an impermeable boundary.

2. Boundary with prescribed pressure

For the Poiseuille flow driven by pressure difference, the
pressure at the inlet and outlet for the flow are specified. To
cast the boundary condition with the specification of pressure
at the inlet and outlet of the channel, we use the following
scheme. For simplicity, we consider the case of a node at the
inlet @see, e.g., node~1,3! in Fig. 1#. A similar procedure can
be applied to the nodes at the outlet. The boundary with
specified pressure is supposed to align in they direction with
eW3, eW4, andeW5 pointing outside the system of interest on a
node at the inlet~see Fig. 1!. After streaming,f 0, f 3, f 4, and
f 5 are known, whilef 1, f 2, and f 6 are unknown. For a node
at the inlet,uy50 is specified andd is also known from Eq.
~6! since the pressure is specified. So we have to determine
f 1, f 2, f 6, andux from ~2!, namely,

f 01 f 11 f 21 f 31 f 41 f 51 f 65d,

f 11~ f 21 f 6!/22 f 42~ f 31 f 5!/25ux , ~21!

~A3/2!@ f 21 f 32~ f 51 f 6!#5uy50.

There are four unknown quantitiesf 1, f 2, f 6, andux , while
only three equations are available from~2!. We assume the
following equation for the prescribed pressure boundary:

f 11 f 45 f 1
~0!1 f 4

~0! . ~22!

The effect of this rule can be understood as the cancellation
of the nonequilibrium part in the direction normal to the inlet
~see Fig. 1!. From Eqs.~21! and~22!, f 1, f 2, f 6, andux can
be worked out as

ux512A12S1,

f 15S22 f 4 ,

~23!

f 25
1

2
~d2 f 02S2!2 f 3 ,

f 65
1

2
~d2 f 02S2!2 f 5 ,

where

S15d2~ f 012 f 314 f 412 f 5!1
~12a!d

3
,

~24!

S25 f 1
~0!1 f 4

~0!5
~12a!d

3
1ux

2 .

Now let us turn to a corner node at the inlet. Consider the
bottom node at the inlet as an example@see node~1,1! in Fig.
1#. After streaming, only threef ’s, i.e., f 0, f 4, and f 5, are
known. But, in addition tod anduy50, ux50 is also speci-
fied at the corner node. As a result, the four unknown quan-
tities, f 3 as well asf 1, f 2, and f 6, are also given by~23! and
~24! with ux50 and

f 35
d2 f 0
2

1
~12a!d

6
2 f 522 f 4 . ~25!

A similar procedure can be applied to the top node at the
inlet.

There are still two points that need to be mentioned. In
our simulation, the triangular lattice is constructed as shown
in Fig. 1. For layers with odd and even values ofi y , the x
coordinates are different even with the same value ofi x @see,
e.g., nodes~1,1! and ~1,2! in Fig. 1#. So in our simulation,
afternx , d1, andd2 are specified, wherenx is the number of
lattice points in thex direction andd1 andd2 are the values
of d on nodes at the inlet and outlet with odd values ofi y ,
respectively, we castd5d1 (d2) on the nodes at the inlet
~outlet! with odd values ofi y and d5d12dd (d22dd) on
the nodes at the inlet~outlet! with even values ofi y . Here
dd5(d22d1)/(nx21). The second point is that in our nu-
merical simulation, all nodes at the inlet~with i x51) or out-
let ~with i x5nx) are treated as boundary nodes by the bound-
ary conditions mentioned above. That is, even for those
nodes with even~odd! values ofi y at the inlet~outlet!, f 2 and
f 6 ( f 3 and f 5) are supposed to be unknown and found by
Eqs.~23! and~24!, although they may be indeed known from
streaming.

With the use of the boundary conditions described above,
our numerical simulation shows thatf i evolve, accurately up
to machine accuracy, into the analytical results~18! for t
ranging from 0.65 to 20.0,u0 ranging from 0.001 to 0.3, and
a variety ofnx andny , after several thousands of time steps,
when the simulation becomes stable. Herenx andny are the
numbers of lattice points in thex and y directions, respec-
tively.

III. SQUARE LBGK MODEL

A. Analytical solution

Now we turn to the square lattice. The LBGK model on
the square lattice is the equation for the evolution of the
momenton distribution functionf i(xW ,t),

f i~xW1deW i ,t1d!2 f i~xW ,t !52
1

t
@ f i~xW ,t !2 f i

~0!~xW ,t !#,

i50,1, . . . ,8, ~26!
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where eW050, eW i5@cos(i21)p/2,sin(i21)p/2# for
i51,2,3,4, andeW i5A2@cos(i2421

2)p/2,sin(i242 1
2)p/2] for

i55,6,7,8~see Fig. 2!. The macroscopic flow velocityuW is
defined in terms off i(xW ,t) by

ruW 5(
i51

8

f ieW i , ~27!

where the constant fluid densityr is again set to unity for an
incompressiblefluid.

The equilibrium momentum distribution functions depend
only on the local velocityuW . They can be chosen in the form
@11#

f 0
~0!5ad2

2

3
uW •uW ,

f i
~0!5

~12a!d

5
1
1

3
~eW i•uW !1

1

2
~eW i•uW !22

1

6
uW •uW

for i51, . . . ,4, ~28!

f i
~0!5

~12a!d

20
1

1

12
~eW i•uW !1

1

8
~eW i•uW !22

1

24
uW •uW

for i55, . . . ,8,

wherea is an adjustable parameter, usually chosen as 4/9,
andd is given by

(
i50

8

f i
~0!5(

i50

8

f i5d.

A Chapman-Enskog expansion can be applied to~26! to
derive the macroscopic equations of the model. For the
steady case, they can be worked out as the exact form of the
steady incompressible Navier-Stokes equation at constant
densityr51 @see Eqs.~4! and ~5!#. On the square lattice,
however, the pressure and the kinematic viscosity are given
by

p5
3~12a!d

5
, n5

~2t21!d

6
~29!

in place of~6!.
Now suppose that there is a solutionf i(xW ,t) to Eq. ~26!

and it represents the Poiseuille flow~7! exactly. The five
properties off i(xW ,t) mentioned in Sec. II still hold for the
square-lattice LBGK model, except that properties~ii ! and
~iii ! should be replaced by~ii 8! ( i50

8 f i(xW )5d5dc(12gx),
wheredc is a constant andg is related to pressure gradient
by

g5
10nu0

3~12a!dc
, ~30!

and ~iii 8! f 2(x,y)5 f 4(x,2y), f 5(x,y)5 f 8(x,2y) and
f 6(x,y)5 f 7(x,2y) owing to the symmetry of flow.
With the assumption

f i~x,y!5~ai8d1ai1biy1ciy
21diy

31eiy
4!

for i50,1, . . . ,8, ~31!

where the 54 coefficientsai8 , ai , bi , ci , etc., are supposed
to be independent ofy, one is ready to find the analytical
solution by using a similar procedure. The results are

a085a, a185a285a385a485
12a

5
,

a585a685a785a885
12a

20
; ~32!

a052
2

3
u0
2 , b05d050, c05

4

3
u0
2 , e052

2

3
u0
2 ;

~33!

a15
1

3
u01

1

3
u0
21

2

3
dtu0n, b15d150,

c152
1

3
u02

2

3
u0
2 , e15

1

3
u0
2 ; ~34!

a252
1

6
u0
22

1

3
d2tu0

21
1

6
d4tu0

21
2

3
d2t2u0

22
7

3
d4t2u0

2

16d4t3u0
224d4t4u0

2 ,

b252
2

3
dtu0

21
2

3
d3tu0

224d3t2u0
214d3t3u0

2 , ~35!

c25
1

3
u0
21d2tu0

222d2t2u0
2 , d25

2

3
dtu0

2 , e252
1

6
u0
2 ;

a352
1

3
u01

1

3
u0
22

2

3
dtu0n, b35d350,

c35
1

3
u02

2

3
u0
2 , e35

1

3
u0
2 ; ~36!

FIG. 2. Schematic plot of the geometry for the plane channel
flow on the square lattice withnx59 andny57. Herenx andny are
the numbers of lattice points in thex andy directions, respectively.
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a55
1

6
dtu0n1

1

12
u01

1

12
d2tu02

1

6
d2t2u01

1

12
u0
2

1
1

6
d2tu0

22
1

12
d4tu0

22
1

3
d2t2u0

21
7

6
d4t2u0

2

23d4t3u0
212d4t4u0

2 , ~37!

b55
1

6
dtu01

1

3
dtu0

22
1

3
d3tu0

212d3t2u0
222d3t3u0

2 ,

c552
1

12
u02

1

6
u0
22

1

2
d2tu0

21d2t2u0
2 ,

d552
1

3
dtu0

2 , e55
1

12
u0
2 ;

a652
1

6
dtu0n2

1

12
u02

1

12
d2tu01

1

6
d2t2u01

1

12
u0
2

1
1

6
d2tu0

22
1

12
d4tu0

22
1

3
d2t2u0

21
7

6
d4t2u0

2

23d4t3u0
212d4t4u0

2 , ~38!

b652
1

6
dtu01

1

3
dtu0

22
1

3
d3tu0

212d3t2u0
222d3t3u0

2 ,

c65
1

12
u02

1

6
u0
22

1

2
d2tu0

21d2t2u0
2 ,

d652
1

3
dtu0

2 , e65
1

12
u0
2 ;

a485a28 , a45a2 , b452b2 ,

c45c2 , d452d2 , e45e2 ,

a785a68 , a75a6 , b752b6 ,

c75c6 , d752d6 , e75e6 , ~39!

a885a58 , a85a5 , b852b5 ,

c85c5 , d852d5 , e85e5 .

Note that these results are exact. If one omits all terms of
O(d2), O(d3), andO(d4), the coefficients turn out to be
much simpler.

B. Boundary conditions

In our numerical simulation, we adopt the nonslip bound-
ary conditions for lower and upper boundaries proposed by
Zou and He @13#, while an alternative approach for the
boundary with pressure specified is presented.

1. Nonslip boundary condition

To cast the nonslip boundary condition at lower or upper
boundaries, we use the following scheme proposed in@13#.

For simplicity, we take the case of a bottom node as an
example. A similar procedure can be applied to the top node.
The boundary is in thex direction witheW4, eW7, andeW8 point-
ing into the wall for the bottom node@see, e.g., node~5,1! in
Fig. 2#. After streaming,f 0, f 1, f 3, f 4, f 7, and f 8 are known,
while f 2, f 5, and f 6 are unknown. For the nonslip boundary,
ux5uy50 are specified on the wall and we have to deter-
mine f 2, f 5, f 6, andd from ~27!. So we have the equations

f 01 f 11 f 21 f 31 f 41 f 51 f 61 f 71 f 85d,

~ f 11 f 51 f 8!2~ f 31 f 61 f 7!5ux50, ~40!

~ f 21 f 51 f 6!2~ f 41 f 71 f 8!5uy50.

Assume the bounce-back rule for the nonequilibrium part of
the distribution functions normal to the boundary, namely, in
this case,

f 22 f 2
~0!5 f 42 f 4

~0! . ~41!

From ~40! and ~41!, f 2, f 5, f 6, andd can be found as

f 25 f 4 ,

f 55 f 72
1

2
~ f 12 f 3!,

~42!

f 65 f 81
1

2
~ f 12 f 3!,

d5 f 01 f 11 f 312~ f 41 f 71 f 8!.

With ~42!, the relaxation step can be applied on the boundary
nodes as well. Notice that in the present improved model, as
f i is related to momentum~or velocity! by ~27!, it is not
necessarily a conserved quantity on the boundaries.

2. Boundary with prescribed pressure

To cast the boundary condition with a specification of
pressure at the inlet and outlet of the channel, we use the
following scheme. For simplicity, we consider the case of a
node at the inlet@see, e.g., node~1,3! in Fig. 2#. A similar
procedure can be applied to the nodes at the outlet. The
boundary with specified pressure is supposed to be aligned in
the y direction witheW3, eW6, andeW7 pointing outside the sys-
tem of interest on a node at the inlet~see Fig. 2!. After
streaming,f 0, f 2, f 3, f 4, f 6, and f 7 are known, whilef 1,
f 5, and f 8 are unknown. For a node at the inlet,uy50 is
specified andd is also known from Eq.~29! since the pres-
sure is specified. So we have to determinef 1, f 5, f 8, and
ux from ~27! as

f 01 f 11 f 21 f 31 f 41 f 51 f 61 f 71 f 85d,

~ f 11 f 51 f 8!2~ f 31 f 61 f 7!5ux , ~43!

~ f 21 f 51 f 6!2~ f 41 f 71 f 8!5uy50.

There are four unknownsf 1, f 5, f 8, andux , while only three
equations are obtained. We assume once again the cancella-
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tion for the nonequilibrium part of the momentum distribu-
tion in the direction normal to the inlet~outlet! ~see Fig. 2!,

f 11 f 35 f 1
~0!1 f 3

~0! . ~44!

From ~43! and ~44!, f 1, f 5, f 8, andux can be evaluated as

ux5d2@ f 01 f 21 f 412~ f 31 f 61 f 7!#,

f 15 f x2 f 3 ,

~45!

f 55
1

2
~d2 f 02 f x!2 f 22 f 6 ,

f 85
1

2
~d2 f 02 f x!2 f 42 f 7 ,

where

f x5
2~12a!

5
d1

2

3
ux
2 . ~46!

A corner node at the inlet needs some special treatment.
Consider the bottom node at the inlet as an example@see
node ~1,1! in Fig. 2#. After streaming, onlyf 0, f 3, f 4, and
f 7 are known, while two extra quantitiesf 2 and f 6, in addi-
tion to f 1, f 5, and f 8, are not available from the streaming.
Note that the corner node is also a lower boundary node@see
node ~1,1! in Fig. 2#; ux50 is therefore specified and the
bounce-back rule~41! may be assumed as well. As a result,
the five unknown quantities,f 2 and f 6, together with f 1,
f 5, and f 8, can be calculated as~45! and ~46! with

f 25 f 4 , f 65
1

2
@d2~ f 01 f 21 f 412 f 312 f 7!#. ~47!

The top node at the inlet can be handled in a similar way.
Here it is interesting to compare our pressure boundary

condition with that proposed in@13#, which assumed the
bounce-back rule for the nonequilibrium part of the distribu-
tion in the direction normal to the inlet~outlet!, namely,

f 12 f 1
~0!5 f 32 f 3

~0! ~48!

for nodes at the inlet and outlet instead of~44! in our
scheme. Although both schemes are able to recover exactly
the analytical results~7! of Poiseuille flow on the square
lattice, the bounce-back rule for the nonequilibrium part of
the distribution fails to get the exact solution~7! on the tri-
angular lattice. On the other hand, our scheme, which as-
sumes the cancellation rule for the nonequilibrium part of
distribution normal to the inlet~outlet!, works well on both
the square lattice and the triangular lattice.

Finally, it should be emphasized that due to the bounce-
back rule~41! used for lower and upper boundaries, the ana-
lytical solution of the distribution function~31!–~39! cannot
be recovered, although the macroscopic solution~7! of the
Navier-Stokes equations~4! and ~5! is obtained, accurately
up to machine accuracy, by numerical simulation. Fort
ranging from 0.65 to 20.0,u0 ranging from 0.001 to 0.3, and

a variety ofnx andny , with the use of our boundary condi-
tions, our numerical simulation shows that thef i evolve into

f 085 f 0 , f 185 f 1 , f 385 f 3 ,

f 285 f 21c1q
y/d, f 485 f 41c1q

2y/d, f 585 f 52
1

2
c1q

y/d,

~49!

f 685 f 62
1

2
c1q

y/d, f 785 f 72
1

2
c1q

2y/d,

f 885 f 82
1

2
c1q

2y/d,

where thef i , with i50,1, . . . ,8, are given by~31!–~39! and

q5
t21

t
, c15

4

3

~6t226t11!d3q1/dtu0
2

12q2/d
. ~50!

With the use of boundary conditions proposed in@13#, the
f i evolve into

f 095 f 08 , f 295 f 28 , f 495 f 48 ,

f 195 f 181c2q
x/d, f 395 f 381c3q

2x/d, f 595 f 582
1

2
c2q

x/d,

~51!

f 695 f 682
1

2
c3q

2x/d, f 795 f 782
1

2
c3q

2x/d,

f 895 f 882
1

2
c2q

x/d,

where thef i8, with i50,1, . . . ,8, are given by~49! and~50!
and

c25
2

9

~122t!d2tu0
11qnx21 , c352qnx21c2 . ~52!

Notice that both of the distribution functions@Eqs.~49! and
~50! and Eqs.~51! and ~52!# recover the macroscopic ana-
lytical solution~7! of the Navier-Stokes equations~4! and~5!
for steady Poiseuille flow.

IV. SUMMARY

In this paper, we have proposed an improved LBGK
model in which the exact form of a 2D steady-state incom-
pressible Navier-Stokes equations can be recovered and the
density of the fluid becomes an irrelevant invariant. The im-
proved model is illustrated on a 2D triangular lattice as well
as a square lattice. Based on the present scheme, exact ana-
lytical solutions to the distributions functions of 2D triangu-
lar and square-lattice LBGK models for steady-state Poi-
seuille flow are obtained. Methods for treating boundary
conditions have been presented that can be used to obtain the
analytical solutions to the distribution function for numerical
simulation on both lattices. On the square lattice, different
analytical solutions to the microscopic distribution functions,
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due to the implementation of different boundary schemes,
have been given. Although distinguished in the microscale
scale, these analytical solutions lead to the same macroscopic
flow velocity.

We would like to point out that for steady plane Couette
flow where the flow is driven by moving the upper boundary
with velocity uc as well as pressure difference, the analytical
solutions to the distribution functions of the present LBGK
model can be similarly obtained on both the triangular and
square lattices. In addition, with the use of the pressure and
nonslip boundary conditions proposed here in a numerical
simulation, the distribution functionf i will evolve into the
analytical solutions, exactly up to machine accuracy, when
the simulation becomes stable@16#.

It is clear that the results here are just a first stage of the
study of incompressible LBGK methods. It is interesting to

extend the present approach to the cases of three dimensions.
The boundary conditions for complex geometry, especially
in three dimensions, will be much more challenging. In ad-
dition, it is also important to generalize the incompressible
scheme to more general unsteady~time-dependent! flows.
The compressibility error-free scheme for unsteady flows is
believed to be more useful in simulating the procedure of the
displacement of oil in porous media. Work along these lines
is in progress.
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