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Improved lattice Boltzmann model for incompressible two-dimensional steady flows
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An improved lattice Boltzmann model with single time relaxation has been proposed for incompressible
two-dimensional(2D) steady flows. In the improved model, the steady-state incompressible Navier-Stokes
equations can be recovered in exact form and the density of the fluid becomes an irrelevant invariant, satisfying
the requirement of incompressibility. Exact analytical solutions to the distribution functions of the 2D trian-
gular and square lattice Boltzmann models have been obtained for steady plane Poiseuille flow based on the
present scheme. Boundary conditions that can be used to recover exactly such analytical solutions in numerical
simulations are proposefl51063-651X96)07312-6

PACS numbdss): 47.10+4g, 05.50:+q

I. INTRODUCTION artificial since the pressure gradient through the flow field is
not necessarily a constant, especially for complex geometry.
In recent years, the lattice BoltzmafitB) method[1—4] In this paper, an improved LBGK model is proposed that

has achieved great success for simulation of various transposein both recover the exact form of 2D steady-state incom-
phenomena ranging from multiphase fluid floMss6] to fluid ~ Pressible Navier-Stokes equations and eliminate the incon-
flows through porous medif7—9] and chemical reacting Sistency between the constant density and variable pressure.
flows [10]. In particular, the LB method as a tool for mod- Our scheme is illustrated on a 2D triangular lattice as well as
eling isothermal, incompressible, low-Reynolds-number vis& Sauare lattice. Based on the present scheme, exact analyti-

cous flow seems most promising. Among different LB meth-cal solutions to the distributions functions of 2D triangular-
ods, the model with single time relaxation, usually referredand square—lqttlce LBQ.K models for steady—state Poiseuille
to as the lattice Boltzmann Bhatnagar-Gross-KréoRGK) flow are obtained. Unified boundary conditions that can be

model[3,4], is believed to be more robust and most simple.used. to obtain the analytical so_lutlon_s to t_he distribution
functions are proposed for numerical simulation on both lat-

]ICIn prac?r::e, r:ow(;eve:, twhen S|mulat|.ng the |t|jcompreSS|bIeti es. On the square lattice, different analytical solutions to
ows, the steady-staleé macroscopic equations recovergg microscopic distribution functions of the LBGK model

from the conv_entional LB,GK mode_l are different fro.m the with the same macroscopic quantity due to different bound-
steady-state incompressible Navier-Stokes equations bé(ry conditions are briefly discussed.

terms of spatial derivatives of the fluid denspy The dis-
crepancies are the so-called compressibility errors in the LB
model, which cannot be eliminated by the refinement of the IIl. TRIANGULAR LBGK MODEL
Iattiqg or by decreals?ng the visc_osity without saprificing the A. Analytical solution
fsrt;z"f[tﬁ/e[igélg ?ndod;ellont’hzcsgggjgmt; t::;g;?gc,:ﬁeo]fljﬁte Let us first illustrate the improved LBGK model on a
density p by p=c2 V\;ith c.. the speed of sound, being a triangular lattice with seven types of lattice links
P =CsP, S ' o — _ infi — = o =

constant. For the incompressible fluid, the requirement thafi_[?:qs(ll_lth/G.’smq lzjwll_%lé}fé)r ! dlly'. -6 %ndegl 0 th
p be a constant in space results in a constant pressu gee ra. € improve model 1S considered as the
throughout the flow, which is inconsistent with many practi-
cal applications, such as flow driven by the pressure differ- st TS boundary
ence like Poiseuille flow. oty

Some authors have noticed these problems. On the one (16)
hand, in their improved LBGK model on the square lattice k) T

; . (1.5)
for incompressible steady flow, Zou and co-workgid] v \N\/XVW\y
have recovered the exact form of the Navier-Stokes equa- <1;)/2vv\/\/w\/\/ z

7 56

tions by using a modified local equilibrium distribution and (1.3)
redefined velocity. However, the constant density for incom-

pressible flow with a pressure gradient still violates the equa- .
tion of statep=c§p. On the other hand, by replacing the  (a.i)=(1.1) & VA
pressure gradient by a uniform body force, exact analytical (1) (1 (41) (1)  lower boundary

solutions to the distribution functions of the LBGK model

for steady Poiseuille flow have been obtairjé@] on two- FIG. 1. Schematic plot of the geometry for the plane channel
dimensional(2D) triangular and square lattices with a con- flow on the triangular lattice witm,=9 andn,=7. Heren, and

stant fluid density. Nevertheless, the introduction of a uni- n, are the numbers of lattice points in tieandy directions, re-
form body force to replace the pressure gradient seems rathspectively.

outlet
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equation for the evolution dfi(i,t), (1-a)d (27—1)6
= V= —F7"".

2 8

(6)

- s - 1 - -
fi(x+ e ,t+ 6)— fi(x,t)=— =[f;(x,t) — FO(x,1)], _ .
i(x+ 08y )= hixD 7'[ ()= HT D] It can be seen from the expression of pressure that the incon-

sistency has been eliminated between the constant density
i=01,...,6, (1) p and variable pressurp related by the equation of state
. p=c§p in the conventional LBGK model.

where f;(x,t) is the distribution function representing the  As a first application of the improved LBGK model for
probability of finding a “momenton” with momenture, at ~ Steady-state incompressible fluid, let us consider the plane
nodeiz(x,y) and timet, andfi(O)()Z,t) is the corresponding Ifoiseuille flow in a channel with width 2 and velocity
equilibrium distribution. The right-hand side of E{) rep- U= (Ux,uy)=(u,0), which is an exact solution of the incom-
resents the collision term andis the single relaxation time pressible Navier-Stokes equatiod$ and(5) and is given by
that controls the rate of approach to equilibrii®)4]. The
macroscopic flow velocityl is defined in terms of the distri- u= Uo( 1—
bution function by

y2

Y o »_
LZ

v ) ay—O, (7)

6 whereG is a constant associated with the characteristic ve-
pu=>, fie, (2) locity ug by
i=1

_ , _ _ , G=2pvuy/L? (8
wherep is the constant fluid density and is set to unity for an
incompressibldluid. Without loss of generality, we may assume that1, which
The equilibrium distribution functions of momentum are can be achieved by a scaling pf=y/L.

supposed to be dependent only on the local flow velocity Now suppose that the improved LBGK model can model

u. A suitable choice i$11] Poiseuille flow without compressibility error. Then there
© L. must be a solutiorf;(x,t) to Eq. (1) that represents the Poi-
fo'=ad-u-u, seuille flow. The solutionf;(X,t) is expected to have the
Codmeyd 1. . 2. . 1. follgwmg epropertles: '(I) ' fi(x,t) is ste'ady, |'..e.,
f! )=—+§(ei-u)+ §(ei-u)2—gu-u, fi(x,t)=f;(x)=f,(x,y) is independent of timet; (i)
Eiﬁzofi(i):d:dc(l—gx), whered, is a constant and is
i=1,....6,3 related to constant pressure gradient by
where « is an adjustable parameter, usually chosen as 1/2, g= ﬂ, 9)
andd is given by (1-a)d;

according to(7) and (8) (remember that =1 andp=1);

6 6
> =3 f=d. (i) fo(x,y)=fe(x,—y) and fs(x,y)=fs(x,—y) due to
1=0 =0 the symmetry of the flow (see Fig. L (iv)

6 . 6
That is, the idea is to let momentum propagate and colliggi-1fi(x.y)&y=uy=0; and V) Zifixy)ex=uc=u,
rather than fluid particles themselves, because for the case Hhereu= uo(l—_y ) (recall th_atL= 1). .
an incompressible fluid, the density is an irrelevant invariant, " the following we shall find such a solution. Frof8),
and set to unity. Note that E€L) is written in physical units the equilibrium distributions for momentum reduce to, for
with the value of the lattice link being and the speed for the uy=Uu anduy=0,
particle on the lattice being unity. As a result, a time step
also has the value of.

A Chapman-Enskog procedure can be appliedlioto

fO(x,y)=ad—U?,

_(Q-ad 11,

derive the macroscopic equations of the model. For the £O(x,y) +Zu+ Zu?,
steady case, they can be worked out as 6 3~ 2
du,=0 4 l-a)d 1 1
o @ e o LT (10
6 37 2
and
l1-a)d 1 1-a)d 1
dp(UgUp) = =3P+ vdgdgUy,, 5 f(zo)(x,y)z( 5 ) +5u f(so)(x,y)z( 5 ) —gu
which is the exact form of the steady incompressible Navier-
Stokes equations at constant density 1. In the above _(1-d 1 (1-=a)d 1

(0) _ (0) = Z
equations, the Einstein summation convention has been useds %Y) 6 6 fo (x.y) 6 +6 v

and the pressure and the kinematic viscosity are given, re-
spectively, by Suppose the solutiofi(x,y) to be of the form
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fi(x,y)=(a/d+a;+by+cy?+dy3+ey?
for i=0,1,4, (11
fi(x,y)=(a/d+a;+bjy+cyy?) for i=2,3,5,6,

where, fori=2,3,5,6,f;(x,y) are expected to be dependent
ony up toy? terms because the correspondﬂﬁ@ is a linear
function of u. In Egs.(11) the 34 coefficients; , a;, b;,

c;, etc., are supposed to be independeny.ofVith the as-
sumption(11), one is ready to find the coefficients by using
the steady condition, while the other four propertiesfpf
serve to confirm the correctness of the fofibd).

In order thatfi(i,t) be steady, forfo(i) one should have
+ 1 0
fo (X,y)="Fo(X,y)— ;[fo(X,Y)_ fo (X, y)]1="fo(X,y).
12

Here f;” denote the distribution function immediately after
collision. Substituting Eqg10) and(11) into (12) yields

ao=a, a0=—u§, b0=d0=0, CO=2ug, eoz _(Ug)
13

The steady condition olfl(i) requires

+ 1 (0)
fr(xy)="Ffi(xy)— ;[fl(x,y)—fl (X,y)]=f1(x+38,y),

(14
from which it follows that
, l-«a 1 1, 2
a1=T, a1=§uo+ §U0+ §TVU05,
(15
1 2 1,
blzdlzo, Cl:_ §U0_UO, elzzuo.
Similarly, for fz(i) to be steady, one expects
+ 1 (0)
fo (X, y)="fa(xy)— ;[fz(X,Y) —f57(xy)]
=fy(x+08/2y+4,), (16

where 6, = J38/2. As a result, one has the coefficients

, l-a 1 1,1,
aZZT, a2:UO+ §TVU05+ gTU05 _ZT U05 y
7
1 1
b2:§TU05, 02:_€U0.

Other coefficients can be found in a similar wéte final
results are summarized belpw

fo(X,y)=ad—u?,

(1-a)d 1 , 2
fi(x,y)= 6 +§u+§u +§7vu05,

(l-a)d 1 1, 2
f4(X,y):—6 —§u+§u _§TVU05,

(1-a)d 1 1 2
fz(x,y)=T+gu+§ruoy5y—§wu05, (18

(l1-ay)d 1 1 2
fa(x,y)= 3 —gu—§7u0y5y+§rvu05,

(1-a)d 1 1 2
f5(x,y)=T—gu+§ruoy5y+§rvu05,
(1-e)d 1 1 2
fG(x,y)=T+gu—§fruoy5y—§rvu05.

It can be easily shown th&18) satisfies propertie§)—(v). It
is, therefore, at least one exact representation of the distribu-
tion functions for the Poiseuille flow.

B. Boundary conditions

The next problem is to check whether the numerical simu-
lation can recover the analytical soluti¢éh8). To do so, the
boundary conditions are very important. As it is well known,
the implementation of an inappropriate boundary condition
may cause a first-order err@2—15. In our numerical simu-
lation, we adopt the nonslip boundary conditions for lower
and upper boundaries proposed by Noéteal. [14], while
another approach for the boundary with prescribed pressure
is presented that can be used to obtain the analytical results
(18) up to machine accurady 5.

1. Nonslip boundary condition

To cast the nonslip boundary condition at lower or upper
boundaries, we use the following scheme proposed.4.
For simplicity, we take the case of a bottom node as an
example. A similar procedure can be applied to the top node.
The boundary is in the direction withes and eg pointing
into the wall for the bottom nodesee, e.g., nodé, 1) in Fig.
1]. After streamingf,, f1, f4, f5, andfg are known, while
f, and f; are unknown. For the nonslip boundary,
u,=uy,=0 are specified on the wall and we have to deter-
mine f,, f5, andd from (2). So we have the equations

fo+fi+f+fy+f,+f5+fs=d,
fi+(fo+fg)/2—f,—(f3+f5)/2=u,=0, (19
(V312)[f o+ f3—(f5+fe)]=u,=0,
from which f,, f;, andd can be worked out as
fo=fs—(f1—"14),

f3:f6+(f1_f4), (20)
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d=fo+ fy+fat 2fg+2fg. 1-a)d
or T laTalsTAe Sy—d— (fot 2t afy+ 260+ =)

With (20), the relaxation step can be applied on the boundary 3

nodes as well. Notice that although the present nonslip (24
boundary conditions are in the same form as those proposed

in [14], the meaning is rather different, because in the present S,= £00) 4 §(0) = (1—a)d +u?

modelf; is no longer a fluid particle distribution. The bound- rooa 3 x:

ary conditions in[14] suffer the disadvantage of nonconser-

vation of the particle number on boundaries, so they seem to Now let us turn to a corner node at the inlet. Consider the
apply only for a somewhat permeable boundary wall. On théottom node at the inlet as an examfgee nodé1,1) in Fig.
other hand, in our model, &s is related to momenturfor ~ 1]. After streaming, only threéd’s, i.e., fy, f4, andfs, are
velocity) instead of particle distribution, they are not neces-known. But, in addition tal andu,=0, u,=0 is also speci-
sarily a conserved quantity on boundaries. The nonsligied at the corner node. As a result, the four unknown quan-
boundary conditions in the present LBGK model thereforetities, f5 as well asf,, f,, andfg, are also given by23) and
may be applied to an impermeable boundary. (24) with u,=0 and

2. Boundary with prescribed pressure d—f, (1-a)d
fa= 5 + —5

For the Poiseuille flow driven by pressure difference, the ~fs2f,. 25

pressure at the inlet and outlet for the flow are specified. To

cast the boundary condition with the specification of pressur@ similar procedure can be applied to the top node at the
at the inlet and outlet of the channel, we use the followinginlet.

scheme. For simplicity, we consider the case of a node at the There are still two points that need to be mentioned. In
inlet [see, e.g., nod&,3) in Fig. 1]. A similar procedure can our simulation, the triangular lattice is constructed as shown
be applied to the nodes at the outlet. The boundary withn Fig. 1. For layers with odd and even valuesipf the x
specified pressure is supposed to align inytldérection with  coordinates are different even with the same valuig, f$ee,

es, €4, andes pointing outside the system of interest on a€.9., nodeg1,1) and(1,2) in Fig. 1]. So in our simulation,
node at the inletsee Fig. 1 After streamingfo, 3, f4, and  afterny, d;, andd, are specified, wheney is the number of

f5 are known, whilef;, f,, andfg are unknown. For a node lattice points in thex direction andd; andd, are the values

at the in|et1uy:0 is Specified and is also known from Eq of d on nodes at the inlet and outlet with odd Valueépf

(6) since the pressure is specified. So we have to determiri@spectively, we casi=d; (d;) on the nodes at the inlet

f1, f,, fe, andu, from (2), namely, (outley with odd values ofiy, andd=d;— &y (d,— 54) on
the nodes at the inldputley with even values of, . Here
fotfi+fotfatf+fs+fg=d, 4= (d,—d;)/(ny,—1). The second point is that in our nu-
merical simulation, all nodes at the inl@tith i,=1) or out-
fi+(fot+fg)2—f,—(f3+f5)/2=u,, (21 let (with i,=n,) are treated as boundary nodes by the bound-
ary conditions mentioned above. That is, even for those
(\/§/2)[f2+ f3—(fs+fg)]=u,=0. nodes with evertodd) values ofi, at the inlet(outled, f, and

fe (f3 and f5) are supposed to be unknown and found by
There are four unknown quantitids, f,, fg, andu,, while  Egs.(23) and(24), although they may be indeed known from
only three equations are available frd®). We assume the streaming.

following equation for the prescribed pressure boundary: With the use of the boundary conditions described above,
©0) 4 +(0) our numerical simulation shows thitevolve, accurately up
fitfa=f"+1,. (22) to machine accuracy, into the analytical resylt§) for =

) . ranging from 0.65 to 20.Qy, ranging from 0.001 to 0.3, and
The effect of this rule can be understood as the cancellatmg variety ofn, andn, , after several thousands of time steps
X yl 1

of the nonequilibrium part in the direction normal to the inlet when the simulation becomes stable. Hegeandn, are the
) . y

(see Fig. 1 From Eqs(21) and(22), fy, f5, fe, anduy can numbers of lattice points in the andy directions, respec-

be worked out as

tively.
UX: 1_ \/1_81,
Il. SQUARE LBGK MODEL
f1=S— 14, A. Analytical solution
23 Now we turn to the square lattice. The LBGK model on
1 the square lattice is the equation for the evolution of the
f2:§(d_ fo=S2) —Ts, momenton distribution functiof(x,t),

1 f.(X+ Je, t+5)—f-(>2t)=—£[f-()2 t)—f(O(x,t)]
fe=5(d—fo—S)—Ts, ' N wo P

where i=0,1,...,8, (26
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upper boundary in place 0f(6).
(S0 e B A R R R Now suppose that there is a solutifyfx,t) to Eq. (26)
nlet o outlet and it represents the Poisedille flof) exactly. The five
s properties off;(x,t) mentioned in Sec. Il still hold for the
(18 & ;8 square-lattice LBGK model, except that propert{@$ and
Y .. -,
(14— 3 ! (iii ) shoul_d be replaced byl_’) 2?=0fi(x)=d:dc(1—gx).,
2 f » p whered, is a constant and is related to pressure gradient
1,3) 7 8 by
M 8
AL 2 % 10vu,
(ia1y)=(1,1) x)oz XX KXXK fxxxxxx)! RXRIKXKXKKX XX g: 3(1— a)dC’ (30)

(1) B1) (41) (6.1) lower boundary

and (iii ") fz(x,y)=f4(x,—y), f5(x,y)="fg(x,—y) and
FIG. 2. Schematic plot of the geometry for the plane channeffs(X,Y)=f7(x,—Yy) owing to the symmetry of flow.
flow on the square lattice with,=9 andn,= 7. Heren, andn, are With the assumption
the numbers of lattice points in theandy directions, respectively.
fi(x,y)=(a/d+a;+by+cy*+dy’+ey?)

where e,=0, e=[cos{—1)m/2,sin(—1)m/2] for
i=1,2,3,4, an; = \2[cos{—4— ) /2, sin(—4— 1) 7/2] for for i=0,1,....8, (3D
i=5,6,7,8(see Fig. 2 The macroscopic flow velocity is

defined in terms ofi(i,t) by where the 54 coefficients/ , a;, b;, ¢;, etc., are supposed

to be independent of, one is ready to find the analytical

o8 solution by using a similar procedure. The results are
pu=2, fie;, 27
i=1 1-«a
. L . . ag=a, aj=az=az=a,= ,
where the constant fluid densipyis again set to unity for an 5
incompressibldluid.
The equilibrium momentum distribution functions depend ., ., ., 1-a
L= . ag=ag=a;=ag=—5~, (32
only on the local velocity. They can be chosen in the form 20
[11] )
f9=ad—-u-u, 2 4 2 2.
0 3 ao=—§ug, b0=d0=0, Co=§ug, eo=—§ug,
o (lmad 1oL 1 33
=g tzEuts(e-u)-gu-u L L )
a;==Ug+ zU3+ = 87Ugr, by;=d;=0,
for i=1,...,4, (29 37 37 3
(l1-a)d 1 . . 1. . 1. . 1 2 1
o= 7.~ TE et __ T, _c 2 2.
fi ) + 12(eI u)+ 8(eI u) Sgu-u (o 3Uo~ 3o, er 3 o (34
for i=5,...,8, 1 1 1 2 7
= gug_ §5ZTU§+ 6547u§+ §5ZT2U(2)— 5547'2Ug

where a is an adjustable parameter, usually chosen as 4/9,
andd is given by +66473u(2)—46474u(2,,

8 8
> 0= f=d.
i=0 i=0

2 2
by=— 3 67uU5+3 °rug—48°r°ug+46°ug,  (35)
A Chapman-Enskog expansion can be applied?® to
derive the macroscopic equations of the model. For the. 1 2 1

T2, 202 5s2 22 _te 2 __ .2
steady case, they can be worked out as the exact form of thgz~ 3 Uo™ & TUo=28"7Ug,  dp=3d7Up, €= = gUp;
steady incompressible Navier-Stokes equation at constant

densityp=1 [see Egs(4) and (5)]. On the square lattice, 1 1 2
however, the pressure and the kinematic viscosity are given az;=— §uo+ §u§—§5ru0v, b;=d;=0,
by
3(1-a)d (27-1)6 1 2 1
=— . v=—p — (29 Ca=3Uo— 3Uo. €s=3up; (36)
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1 1 1 1
=_ il T2 o2 )
a5 667U0V+ 12U0+ 126 TUO 65 7'2U0+ 12“0
1 1 1 7
202 2_ T2 2, = 2 2
+ 65 TUg 12647u0 35 72u0+ 6547' Ug
—36*7%U3+268%r*ud, (37)

1 1 1
b5=657u0+ §5¢u§— §b\°’7ug+ 2§72u§—25373u5,

1 1 1
Cs=— 1—2U0_ EUS—E5ZTUS+ 527'2Ué,
1
ds=— §5ru3, e5=1—2u(2,;
ag=— 157'u01/— iuo— — 8% TUg+ E527'2u0+ —u3
6 12 12 6 1270

1 1 1 7
T S2rul— = 2~ s2.202, 2
65 TUg 12547-u0 35 T°Ug 6647'2u0

—38*7%u3+ 26473, (38)

1 1 1
bg=— €5Tu0+ §5TU(2)— §§TUS+ 26372u3—26373u§,

1 1 1
C5=1—2U0_ EUS— EﬁzTU%-i— 52T2Ug,
1 1
_ 2 _ 2.

d6——§57u0, e6—1_2U0,
as=a,, az=ap, by=-by,
C4=Cy, dy=—d;, e4=¢y,
a;=ag, ar=ag, b;=—Dhg,
C;=Cg, d7:_d5, €,=¢6g, (39)
aé:aév ag=as, bg=—Dbs,
CBZCS, d8:_d5, e8:e5.
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For simplicity, we take the case of a bottom node as an
example. A similar procedure can be applied to the top node.
The boundary is in the direction withe,, €;, andeg point-

ing into the wall for the bottom nodesee, e.g., nodés,1) in

Fig. 2]. After streamingf, f4, f3, f4, f7, andfg are known,
while f,, f5, andfg are unknown. For the nonslip boundary,
u,=u,=0 are specified on the wall and we have to deter-
mine f,, f5, fg, andd from (27). So we have the equations

f0+fl+f2+ f3+ f4+f5+f6+ f7+f8:d,

(f1+f5+fg)_(f3+f6+f7):UX:0, (40)

(f2+f5+f6)_(f4+f7+f8):uy:0

Assume the bounce-back rule for the nonequilibrium part of
the distribution functions normal to the boundary, namely, in
this case,

fo— 5 =f,— . (41)

From (40) and (41), f,, fs5, fg, andd can be found as

f2=f4,

1
fs="f,— E(fl_fs),
(42)

1
fe=fg+ E(fl_fs),

d:fo+fl+f3+ 2(f4+f7+f8)

With (42), the relaxation step can be applied on the boundary
nodes as well. Notice that in the present improved model, as
f; is related to momentunfor velocity) by (27), it is not
necessarily a conserved quantity on the boundaries.

2. Boundary with prescribed pressure

To cast the boundary condition with a specification of
pressure at the inlet and outlet of the channel, we use the
following scheme. For simplicity, we consider the case of a
node at the inlefsee, e.g., nod€l,3) in Fig. 2]. A similar
procedure can be applied to the nodes at the outlet. The
boundary with specified pressure is supposed to be aligned in
they direction with 63, és, andé7 pointing outside the sys-
tem of interest on a node at the inletee Fig. 2. After

Note that these results are exact. If one omits all terms Ofyreaming,f,, f,, fs, fa, fs, andf, are known, whilef,

0(6%), 0(48%, and O(8%), the coefficients turn out to be

much simpler.

B. Boundary conditions

In our numerical simulation, we adopt the nonslip bound-
ary conditions for lower and upper boundaries proposed by
Zou and He[13], while an alternative approach for the

boundary with pressure specified is presented.

1. Nonslip boundary condition

fs, and fg are unknown. For a node at the inlet,=0 is
specified andl is also known from Eq(29) since the pres-
sure is specified. So we have to determfne fs, fg, and
u, from (27) as

f0+fl+f2+ f3+ f4+f5+f6+ f7+f8:d,
(fit+fs+fg)—(fa+fet+fr)=uy, (43

(f2+f5+f6)—(f4+f7+f8)=uy=0.

To cast the nonslip boundary condition at lower or upperThere are four unknownf, fs, fg, andu,, while only three

boundaries, we use the following scheme proposeld #.

equations are obtained. We assume once again the cancella-
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tion for the nonequilibrium part of the momentum distribu- a variety ofn, andn,, with the use of our boundary condi-
tion in the direction normal to the inl€butled (see Fig. 2, tions, our numerical simulation shows that theevolve into

fitfa=Ff 0+, (44) fo="fo, f1=fy, f3=fs,

From (43) and(44), f,, f:, fg, andu, can be evaluated as 1
( ) ( ) 1, !5, 18 X f§=f2+01qy/5, fizf4+01q_y/5, fé=f5— EClqylﬁ’

Uy=d—[fot+ o+ Ts+2(fs+fe+T7)], (49)
f]_:fx_f3, 1 , 1
(45) fomfom 300 ==z
1 1
fszz(d_fo_fx)_fz_f& fé:fs_iclq*y/‘s,

1 where thef, , withi=0,1,. . .,8, are given by31)—(39) and
fo=y(d—fo— T~ 4= 17, i given by31)=(39

-1 4 (67°—67+1)8%q" 1}
where q=—"" Ci1=3 g . (50
_2(l—a) 2, With the use of boundary conditions proposed 113], the
x5 d+ 3 (46) f; evolve into
A corner node at the inlet needs some special treatment. fo="fg, fo="fy, fi="f4,

Consider the bottom node at the inlet as an exanipée
node(1,1) in Fig. 2]. After streaming, onlyf,, f3, f,, and
f, are known, while two extra quantitids andfg, in addi-
tion to f4, f5, andfg, are not available from the streaming. (51
Note that the corner node is also a lower boundary riede

node (1,1 in Fig. 2]; u,=0 is therefore specified and the R TR
bounce-back rul¢41) may be assumed as well. As a result, 6= 6™ 5Ca
the five unknown quantitiesf, and fg, together withf,
fs, andfg, can be calculated d¢5) and (46) with

1
f1=f1+c,q¥% f4=fi+csq 7, fg=fg—§cqu’5,

x/ 8 —x/8

n ! 1
) f7:f7_§f33q ,

1
1 fy=f4— 50",
fo=fs, fo=pld=(fotfotfst2fat2f)] 4D e thef/, withi=0,1,...,8, are given by49) and(50)
and
The top node at the inlet can be handled in a similar way.
Here it is interesting to compare our pressure boundary 2 (1—27)6%7uq I
condition with that proposed ifi13], which assumed the Co=g ~qygnl 0 T 4% G2 (59
bounce-back rule for the nonequilibrium part of the distribu-
tion in the direction normal to the inlébutle, namely, Notice that both of the distribution functiofi&gs. (49) and
0 0 (50) and Egs.(51) and (52)] recover the macroscopic ana-
fi— 0 ="f—f§ (48 Iytical solution(7) of the Navier-Stokes equatiof4) and(5)

. . _ for steady Poiseuille flow.
for nodes at the inlet and outlet instead @4) in our

scheme. Although both schemes are able to recover exactly
the analytical result47) of Poiseuille flow on the square
lattice, the bounce-back rule for the nonequilibrium part of In this paper, we have proposed an improved LBGK
the distribution fails to get the exact solutiér) on the tri-  model in which the exact form of a 2D steady-state incom-
angular lattice. On the other hand, our scheme, which agsressible Navier-Stokes equations can be recovered and the
sumes the cancellation rule for the nonequilibrium part ofdensity of the fluid becomes an irrelevant invariant. The im-
distribution normal to the inletoutlet), works well on both  proved model is illustrated on a 2D triangular lattice as well
the square lattice and the triangular lattice. as a square lattice. Based on the present scheme, exact ana-
Finally, it should be emphasized that due to the bouncehytical solutions to the distributions functions of 2D triangu-
back rule(41) used for lower and upper boundaries, the anadar and square-lattice LBGK models for steady-state Poi-
lytical solution of the distribution functiof31)—(39) cannot  seuille flow are obtained. Methods for treating boundary
be recovered, although the macroscopic solutinof the  conditions have been presented that can be used to obtain the
Navier-Stokes equation@) and (5) is obtained, accurately analytical solutions to the distribution function for numerical
up to machine accuracy, by numerical simulation. For simulation on both lattices. On the square lattice, different
ranging from 0.65 to 20.Qy, ranging from 0.001 to 0.3, and analytical solutions to the microscopic distribution functions,

IV. SUMMARY



6330 LIN, FANG, AND TAO 54

due to the implementation of different boundary schemesextend the present approach to the cases of three dimensions.

have been given. Although distinguished in the microscaléfhe boundary conditions for complex geometry, especially

scale, these analytical solutions lead to the same macroscopi¢ three dimensions, will be much more challenging. In ad-

flow velocity. dition, it is also important to generalize the incompressible
We would like to point out that for steady plane Couettescheme to more general unsteadiyne-dependentflows.

flow where the flow is driven by moving the upper boundaryThe compressibility error-free scheme for unsteady flows is

with velocity u. as well as pressure difference, the analyticalpelieved to be more useful in simulating the procedure of the

solutions to the distribution functions of the present LBGK disp|acement of oil in porous media. Work a|ong these lines
model can be similarly obtained on both the triangular ands in progress.

square lattices. In addition, with the use of the pressure and
nonslip boundary conditions proposed here in a numerical
simulation, the distribution functior; will evolve into the
analytical solutions, exactly up to machine accuracy, when
the simulation becomes staljl&6]. The authors would like to thank Exxon R&E Company

It is clear that the results here are just a first stage of théor financial support and Professor Ping Sheng for illuminat-
study of incompressible LBGK methods. It is interesting toing discussions.
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